Hardness and Approximation of Octilinear Steiner Trees

نویسندگان

  • Matthias Müller-Hannemann
  • Anna Schulze
چکیده

Given a point set K of terminals in the plane, the octilinear Steiner tree problem is to find a shortest tree that interconnects all terminals and edges run either in horizontal, vertical, or ±45 diagonal direction. This problem is fundamental for the novel octilinear routing paradigm in VLSI design, the socalled X-architecture. As the related rectilinear and the Euclidian Steiner tree problem are well-known to be NP-hard, the same was widely believed for the octilinear Steiner tree problem but left open for quite some time. In this paper, we prove the NPcompleteness of the decision version of the octilinear Steiner tree problem. We also show how to reduce the octilinear Steiner tree problem to the Steiner tree problem in graphs of polynomial size with the following approximation guarantee. We construct a graph of size O( n 2 ε2 ) which contains a (1+ε)–approximation of a minimum octilinear Steiner tree for every ε > 0 and n = |K|. Hence, we can apply any α-approximation algorithm for the Steiner tree problem in graphs (the currently best known bound is α ≈ 1.55) and achieve an (α+ε)approximation bound for the octilinear Steiner tree problem. This approximation guarantee also holds for the more difficult case where the Steiner tree has to avoid blockages (obstacles bounded by octilinear polygons).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of Octilinear Steiner Trees Constrained by Hard and Soft Obstacles

The novel octilinear routing paradigm (X-architecture) in VLSI design requires new approaches for the construction of Steiner trees. In this paper, we consider two versions of the shortest octilinear Steiner tree problem for a given point set K of terminals in the plane: (1) a version in the presence of hard octilinear obstacles, and (2) a version with rectangular soft obstacles. The interior o...

متن کامل

Constrained Steiner trees in Halin graphs

In this paper, we study the problem of computing a minimum cost Steiner tree subject to a weight constraint in a Halin graph where each edge has a nonnegative integer cost and a nonnegative integer weight. We prove the NP-hardness of this problem and present a fully polynomial time approximation scheme for this NP-hard problem.

متن کامل

A Near Linear Time Approximation Scheme for Steiner Tree Among Obstacles in the Plane

We present a polynomial time approximation scheme (PTAS) for the Steiner tree problem with polygonal obstacles in the plane with running time O(n log n), where n denotes the number of terminals plus obstacle vertices. To this end, we show how a planar spanner of size O(n log n) can be constructed that contains a (1 + ǫ)-approximation of the optimal tree. Then one can find an approximately optim...

متن کامل

Parameterized Approximation Schemes for Steiner Trees with Small Number of Steiner Vertices

We study the Steiner Tree problem, in which a set of terminal vertices needs to be connected in the cheapest possible way in an edge-weighted graph. This problem has been extensively studied from the viewpoint of approximation and also parametrization. In particular, on one hand Steiner Tree is known to be APX-hard, and W[2]-hard on the other, if parameterized by the number of non-terminals (St...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005